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Background and Objectives:
Obesity is a global health issue affecting millions and reducing sugar intake with nonnutritive sweeteners is one potential path to reducing dietary energy consumption that can have a positive health impact. The leaves of the Stevia rebaudiana

(Bertoni) plant produce steviol glycosides: including stevioside; rebaudiosides A, B, C, D, E, F, and M; dulcoside A; rubusoside; and steviolbioside. Steviol glycosides are 200-350 times sweeter than sugar but contribute no calories, therefore making

Stevia a leaf crop of significant economic value. The food industry has a very positive outlook on the opportunities for Stevia ingredients in zero or calorie-reduced products. Consequently, the Stevia ingredient market is expected to cross $1 billion

USD by the year 202110. High yields; desired quality traits; resistance to pests and diseases; and dependable economic returns are key characteristics of any domesticated commercial crop. Such basic characteristics are generally selected over

many generations through intensive plant breeding efforts to create improved varieties. Although systematic cultivation of Stevia started in the 1970s in China, South America and Japan, only recently crop improvement efforts have been focused on

making Stevia more scalable and an economically sustainable crop.

Results:
These data have been integrated into a comprehensive bioinformatics platform for visualization and analytics of all available genomic, transcriptomic and metabolomic Stevia datasets. This interface will enable specialists from multiple disciplines,

such as chemists, biochemists and geneticists, to mine this platform to understand and improve existing steviol glycoside biosynthesis pathways through traditional breeding or discover new pathways or compounds for similar non-GMO

improvement.

Here the assembly of the genomes of three Stevia varieties is presented, which are all comparable to other published high quality genomes of the Asteraceae. There appears to be expansion of the UGT family of enzymes,

which play a critical role in the production of steviol glycosides; this expansion might help explain the diverse set of steviol glycosides found in Stevia. In addition to enabling the improvement of traditional breeding for

agronomic and sustainability benefits, this new knowledge of the Stevia genome can facilitate improvements in the abundance of the steviol glycosides that are more sugar-like in taste, thus enabling the development of high-

purity Stevia leaf extracts for deeper reductions in sugar and calories in food and beverage products. Stevia leaf extracts are natural-origin, plant-based, zero-calorie sustainable sweeteners, thus appealing to those looking for

more natural plant-based ingredients in their diet. Food and beverage products with reduced sugar and calories can help consumers meet personal and public health priorities for improved diets and health.

Conclusions:
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Methods:
Despite limited understanding of Stevia’s

genetics, biology or plant physiology, recent

demand for steviol glycosides requires

rapid improvement of Stevia cultivars

currently used in commercial cultivation. To

rapidly facilitate this, we have sequenced,

generated genome assemblies, and fully

annotated the genomes of three

commercial Stevia varieties with improved

levels of the better tasting, more sugar-like

minor rebaudiosides.
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Assembly Metrics for Stevia And Other Sequenced Members of the Asteraceae

The assembled genomes for the three Stevia varieties are comparable to the other published genomes from Asteraceae

Expansion of UDP-Glycosyltransferase (UGT) Families in Stevia

UGT72

UGT73

UGT74

UGTs mediate the transfer of a glycosyl group to acceptor molecules, an enzymatic process that is critical for the

production of steviol glycosides, amongst many additional secondary metabolites. In Stevia, this class of enzymes

appears to be expanded as compared to other plants (such as the well known model plant Arabidopsis), which may

affect the production of steviol glycosides.
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High Frequency of Retrotransposons Present in Asteroideae

Repetitive elements, such as transposons and retrotransposons, are a common feature of all genomes. Both the closely

related Stevia and Sunflower appear to have a large percentage of their repetitive elements as retrotransposons, mainly

of the gypsy and copia families. Large number of repetitive elements such as found in the Asteroideae increase the

complexity of genome assembly.

Legend

Long INterspersed Elements 

(LINE) Non-LTR Retrotransposons

CACTA Transposons

Mutator Transposons

Ty1-copia LTR Retrotransposons

Ty3-gypsy LTR Retrotransposons
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Metrics Stevia Sunflower Horseweed Lettuce Safflower Artichoke

Variety References 814011 807086 817096 HA412-HO 3 XRQ 1 TN-R 5 Salinas 6 AC Sunset 2 2C 8

Predicted Haploid Genome Size in Gigabase-pairs (1Gb = 109) 1.15 ± 0.03 1.17 ± 0.01 1.20 ± 0.01 3.6 0.34 2.5 1.35 1.08

Long Read (PacBio) Coverage of Haploid Genome 75X 71X 81X ― 102X 4.5X ― ― ―

Short Read Coverage of Haploid Genome / 

Sequencing Platform Used

151X /

Illumina

221X /

Illumina

125X /

Illumina

80X / Solexa

15X / 454
―

230X /

Illumina

72.5X /

Illumina

21X /

Illumina

133X /

Illumina

Total Gbs in assembly 1.7 1.4 1.4 ~2.0 2.9 0.31 2.21 0.87 0.66

Total Number of Contigs (Contiguous DNA fragments) 9,814 7,071 14,405 ~800,000 12,318 20,075 21,116 3,254,412 79,681

Median Contig Length (N50) in Kilobase-pairs (1Kb = 103) 332 441 184 ― 524 21 36 0.4 18

Number of Predicted Gene Models 91,623 74,534 74,785 77,855 58,035 44,592 31,348 ― 26,889

BUSCO9 genes detected; a measure of completeness 89% 89% 88% ― 92% ― ― ― ―
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